中国有色金属工业网 中国有色金属工业协会主办
行业统计

我国铝电解技术40年发展回顾(十)
2021-03-15 09:06:04   来源:中国有色金属报    点击:

 
责编·作者:梁学民
 
  多项重大技术突破
  ——实现内涵式提升
 
  经过130多年的不断发展,电解铝技术从最初的小作坊生产,已经发展成为具有高度规模化、集约化、自动化和高效率的现代流程工业。正如业内有一句行话所言:电解铝三天能入门,三十年学不透。电解铝技术绝对不简单,它是常用金属中最难冶炼的一种,迄今也只有唯一一种工业生产方法。由于铝电解过程涉及的学科和理论十分庞杂,各种技术难题也交织在一起,除了融盐电化学反应的热力学、动力学过程、电解质组分与物化特性等基础性领域,电、热、磁、结构力学及磁流体动力学特性也是最近几十年研究的核心领域,还涉及阳极、阴极材料、结构材料,抗腐蚀、耐高温、抗渗透材料等方面诸多材料领域的难题,还有大量工业和工程领域的问题。电解槽既是电解铝工业的核心设备,又是以大批量规模化生产为特征,电力能源密集、投资密集和技术密集,可谓牵一发而动全身,即便是错了一颗螺丝,也会造成几百上千个废品。我国电解铝在大型化的过程中,从没有忽视质的提升,大量的科技创新成果,一直稳固地支撑着我国电解铝今天的辉煌发展。尤其是在电解工艺过程控制、连续稳定运行工艺与装备、环保技术以及新型阴极结构的创新和研究领域,成效卓著,让世界侧目。
 
  工艺与控制——高效运行关键技术。我国铝电解工艺与控制技术从“日轻”技术的引进开始,得到了大力的提升,这也是我国在该领域研究的起点。基于当时对铝电解工艺过程的研究和认识基础,当时的“日轻”技术是相对落后的。从后来的研究证明,早期引进工程出现的大量生产问题与其落后的工艺技术不无关系。其主要表现在:一是加料制度不合理,加料间隔时间长(30分钟),加料量大(每次加料量4×15=60kg/次),就是人们常说的“暴饮暴食”,而且当时采用的是一种风动加料器(实际上是靠小型风动溜槽吹送),精确度很低,造成的波动很大;二是电解质中氧化铝含量的控制模式,在当时还是一种“黑箱”模型,被称为“效应控制”的模型。
 
  对电解槽而言,用计算机实现正常的作业控制,从技术上来说虽然复杂,但不存在理论上的难点。输入系统的是电压、电流两个信息,输出的打壳加料和提升阳极两个变量。自控专家、郑州轻金属研究院原副院长赵庆云曾经给电解铝的控制技术下了个定义:如果不考虑工艺过程的优化运行,电解槽的控制与一般工业过程无异,并非难事,但是,铝电解的工艺复杂在于要实现工艺过程的优化运行是非常困难的。
 
  “低温、低电压、低分子比、低氧化铝浓度和高效率”工艺(“四低一高”)是国际铝电解工艺发展的趋势,其核心难点在于氧化铝浓度的控制,而这一难题的攻克经历了长期艰难的过程。在上世纪80年代,新的电解槽主要指标已经明显提高,控制技术的应用有一定的贡献,这是控制技术发展的第一个阶段。但实际上,这一阶段除了电解槽的设计和电磁场改进的贡献占主要因素以外,控制系统的贡献主要来源于新的加料器和加料制度的改进。即“勤加工、少加料”工艺使氧化铝浓度波动大大减少了,1.8kg以下容量的筒式加料器的研制成功是关键所在。“阳极效应”是电解槽内氧化铝浓度达到极低限值时系统中发出的警示性信号,较高的阳极效应系数说明氧化铝浓度控制问题在这一阶段还没有真正得到解决。
 
  我国这一领域经过不断地研究开发,最终取得了重大的进展,使我国电解铝运行技术指标跨上一个新台阶。代表性成果有很多,评价的主要依据就是“槽电阻-氧化铝”浓度曲线的研究和控制模型的建立,突破了氧化铝浓度黑箱模型的限制,使阳极效应系数从1次/槽·日降低至0.05次/槽·日以下。
 
  中南大学李劼、丁风其等完成的“铝电解过程智能控制系统及推广应用”;贵阳院田庆红等完成的“铝电解三度寻优控制技术”;贵阳院席灿明和北方工业大学李晋宏等完成的“铝电解智能模糊控制技术”;沈阳院研制完成的“铝电解全息智能操作控制技术”。多项成果达到国际先进水平,也标志着我国铝电解技术全面进入世界先进行列。2005年,这一领域的研究成果获得了国家科技进步二等奖。
 
  系列连续运行工艺与装备——破解制约规模化发展瓶颈。对于300台以上电解槽组成的电解系列,如果一台槽的停或者开都必须全系列停电,一年就要停电100到200次,30~40分钟的停电不仅减少产铝量,而且破坏了电解槽的各种技术条件,电解槽物理特性被改变,电化学过程受到严重干扰,电解槽效率下降、能耗升高,一个系列每年的损失达到数千万元。而且大大增加阳极效应的发生,温室气体排放大幅度增加(阳极效应时产生的过氟化碳温室效应是CO2的6600多倍),尤其严重的是频繁地大负荷短时停/开冲击,对铝厂的供电设备乃至电网的安全造成了严重威胁。
 
  连续性工艺是流程工业的一项重大课题,频繁断电对电解铝生产的危害更是不言而喻。这是一项长期困扰电解铝发展的世界技术难题,必然成为制约电解铝大型化的瓶颈。
 
  从1995年1月起,笔者几乎寻遍了全国电力专家,也没找到可行的解决办法。直到1997年,一个偶然的机会,在火车上巧遇湖北超高压局总工程师李国兴教授,“三峡电力外输都是我负责,这事能干。”李教授认为实现不停电停开电解槽是有可能的,因为这次巧遇,笔者下决心要开发这项技术,并约定共同开发。直到2004年,来到河南中孚实业担任总工程师的笔者,大胆向国家提出了立项申请,得到了国家重大产业技术开发专项支持,该项目的攻关正式启动。然而,在与德国某知名企业合作一年后,技术攻关最终还是宣告失败。
 
  李国兴——情系电解铝的电力专家。2005年,已退休多年居住美国的李国兴教授受邀回国再度出手,想要兑现他8年前共同开发此项技术的约定。但在了解了操作原理并考察了现场之后,李教授认为,问题比他想象的要复杂,原有的方案行不通。由于自己已经退休力不从心,但他决定还是要支持到底,力荐刚刚从日本回国任教的华中科技大学电力学院副院长何俊佳博士。通过不断地探索及与电力专家的深度交流与合作,逐渐理清了开发思路。
 
  类似于大坝截流,根据电解槽停/开过程,攻关组构思了这样一个原理,即“先分流、后短路、再断流(槽电流)”。独创了一种可变电阻分流测试方法,来测试分流量、电压及时间和温度变化及相关安全参数,解决了超大电流试验的难题。然后由小到大,由70kA电解槽扩大到320kA电解槽。经过120多台320kA槽的连续全电流启动开槽试验后,所有问题被成功破解。2006年9月,经过11年的曲折与探索,这一难题终被彻底攻克。
 
  “大型铝电解系列连续稳定运行工艺与装备”终于研制成功。时任中国有色金属工业协会会长康义亲自主持了鉴定会,四位院士组成的专家组鉴定认为:其原理和方法为世界首创,成套技术和装备达到国际领先水平,实现了铝电解系列连续、高效和长周期稳定运行。该成果入选“2006年中国十大工程与技术进展”。CCTV《新闻联播》《人民日报》《科技日报》等相继给予报道;CCTV《经济半小时》专题介绍了这一成果的研发过程。
 
  这一成果获得2010年“中国专利金奖”,2012年获得国家技术发明二等奖,这是我国在铝电解技术领域获得的唯一一项国家技术发明奖。
 
  异型阴极与新型结构阴极技术——异曲同工的创新。由于传统电解工艺逐步趋于完善,从上世纪60年代美国铝业公司就开始探索新的替代炼铝技术-氯化铝电解工艺,到90年代,开始研究惰性阳极电解工艺。然而,东北大学冯乃祥教授在认真研究后认为,惰性阳极并不能大幅度地节能降耗,材料问题也很难解决。2007年在沈阳的一次会议期间,冯教授谈了他的想法:另辟蹊径,将目光投向了电解槽的阴极,决定沿着传统电解铝工艺,从改善生产过程的铝液流动(改善磁流体动力学)入手,找到一种捷径,提高电流效率、降低槽电压。从上世纪90年代末,冯乃祥发明泄流式电解槽结构,开启新型阴极结构铝电解槽研究,历经了十余年的多次改进,通过改变阴极形状,形成对电解槽内铝液流动的“阻波”作用,以明显降低铝液磁流体流动的振幅,建立了高效节能新型阴极结构铝电解槽的基础理论。2007年7月到2008年9月,他联合田应甫教授在重庆天泰铝业3台168kA电解槽上进行试验,终于取得意想不到的成果:吨铝直流电耗从13393kWh下降到12300kWh,吨铝节能1000kWh以上。之后,在华东铝业94台200kA电解槽上进行了示范推广。冯乃祥等完成的这一技术在国内外产生了很大的反响,引起了众多企业的关注,并迅速在20多家铝厂推广和试用。这一技术获得了美国TMS协会铝电解创新技术奖,2010年中国专利优秀奖。
 
  2008年底,中国铝业公司顾松青和刘风琴教授等在沁阳铝电解试验厂的2台160kA电解槽上,成功试验了国外多年研究未果的新型阴极结构导流槽技术,据报道电解槽槽电压稳定控制在3.7~3.8V,同样实现了吨铝节能1000kWh的目标。之后在中铝公司所属贵州铝厂、兰州铝业等企业推广使用。中国铝业公司专门举行新闻发布会宣布这项重大成果。
 
  冯乃祥的异型阴极电解槽与中铝新型结构导流电解槽的相同之处都是把创新焦点集中在了阴极结构的改变上,所不同的是异型阴极是在阴极表面按一定要求和规则设计了一组阴极“凸台”,凸台对铝液的流动产生了物理阻挡的作用;而新型结构导流槽是在阴极表面开一组“凹槽”,使得阴极表面同样形成了凹凸的结构,由于铝液在凹槽内被约束,同样减缓了铝液的流动。
 
  “破波器”(Wave Breaker)。异型阴极技术在某些国外文献中也被称为“破波器”,尽管由于目前遇到以下两个问题:一是阴极突出部分在电解槽运行一段时间后(半年左右)由于热应力和铝液的冲刷,会脱落或磨蚀掉,使得对铝液流动的阻挡减弱或失去作用;而是凸台或者凹槽的形状、高度以及布置方式对不同的槽子效果不同,未来需要精确的仿真作为依据,以取得最佳的效果。但无论如何,这项技术的诞生,给铝电解生产大幅度节电指出了新的技术方向。
 
  由于技术原理的相似性,两个团队经过艰苦协商,最终共同申报了这项成果,冯乃祥、顾松青等获得了2014年国家科技进步二等奖。
 
  槽寿命——1500天到3000天的蝶变。“槽寿命”,无论谁听到这个名词都能感觉其中的分量,还有什么比“寿命”更重要的吗?自“日轻”引进技术以来,电解槽寿命问题就是一直困扰我国铝电解生产的难题。电解槽一旦破损停槽,维修的成本很高,加上启动费用在内,大修一次产生的费用相当于电解槽总投资的大约1/3以上。由于在铝电解厂电解槽一般是成系列(一个电解系列有多达300台以上的电解槽)安装运行的,寿命问题就是电解铝的重大经济问题,直接关系到铝厂的经济效益。
 
  如何提高电解槽寿命?材料问题、设计问题、施工问题、焙烧启动方法、生产工艺过程及管理多方面的问题交织在一起,其复杂程度可想而知,可以说任何一个环节都可能导致电解槽早期破损,从而槽寿命缩短;但任何一种技术和改进都很难保证电解槽寿命真正地延长。而且,理论研究的成果要在实际生产中得到验证必须经过长时间的生产检验,短时间的研究试验很难得出令人信服的成果。因此,相当长时间内没有人敢于肯定1500天的设计目标真的能在工厂实现,也没人知道究竟需要多少年我们才能达到国际上2700天的目标。然而,说不清从什么时候开始,槽寿命问题渐渐地就不再是人们议论的焦点。今天我们一些铝厂的槽寿命甚至已经超过了3000天(中孚实业400kA槽超过10年的槽数占到了30%以上)。
 
  材料技术的研究和改进。炭素阴极块的生产制作技术改善了阴极导电性和对电解质和钠离子的渗透;底部防渗材料的研制与应用有效地当了电解质渗透对保温层的腐蚀与破坏;电解槽高强防渗浇注料(主要用于电解槽侧下部)有效改善了阴极周围的防渗漏效果和温度分布;侧部碳氮化硅材料的应用大大改善了侧部散热、促进了槽内炉帮的形成,可以有效保护电解槽内衬被侵蚀。
 
  设计理论的完善。最基础的影响是在设计理论的建立和完善上,首先是热电模型和仿真技术的开发,为电解槽获得合理优化热设计奠定了基础,槽体内的温度分布、能量平衡可以精确预测;其次研究明确了电解槽底部等温线特征值的最佳区域位置,即电解质凝固等温线位于阴极炭块以下位置,有利于削弱会延缓电解质渗透对阴极的破坏作用,而钠离子的析出温度当处于保温层与耐火层之间;第三是设计了能够有效吸收电解槽阴极膨胀变形,减少阴极结构因温度和吸钠膨胀造成的阴极破损的“可压缩结构”(又称“柔性”结构);第四是通过侧部散热结构设计界定了理想炉帮和实现理想炉帮形状的方法,即铝液-电解质界面和铝液层水平电流分布为判定标准。
 
  施工工艺和技术的提高是材料研究和设计成果工程化的关键。无论多么完善的施工规程,有时候也很难获得好的效果,电解铝优良的施工质量就是在不断的实践和探索中建立起来的,对关键环节施工工艺的理解和严格地按标准操作才是技术的核心。
 
  工艺技术不断完善。经过40年的发展,从焙烧启动到生产操作技术都得到了极大的提升和转变。从学习和膜拜日本引进技术,到彻底放弃铝液焙烧启动技术;从280kA试验开始使用,到焦粒焙烧技术的逐步完善和推广应用;从“效应”控制、大加料量工艺到“四低一高”、点式加料稳定操作,电解铝的生产工艺与操作管理有了质的飞跃。
 
  技术进步——依靠全行业的持续创新。不可否认槽寿命的提高确实是我国铝电解技术的一项重大成果,一项了不起的成就,凝聚了电解人的集体智慧和四十年不懈探索的结果。电解铝技术许许多多的改进和创新,类似于槽寿命这样的创新成果还有很多,正因为有太多人的心血和贡献,也不太容易由某个单位和个人获得相应的奖励,每一项进步都是由许许多多的科技人员同时在不同单位完成的,导致很多的科技成果没办法说清楚,但电解铝工业在实实在在地大步前进。
 
 
 

相关热词搜索:

上一篇:激光增材制造引领技术新时代——盘点航空航天领域3类典型材料及应用挑战
下一篇:3月15日长江有色金属现货上午快讯